Molecular tests of phylogenetic taxonomies: a general procedure and example using four subfamilies of the lizard family Iguanidae.
نویسندگان
چکیده
A general procedure is described for examining when results of molecular phylogenetic analyses warrant formal revision of taxonomies constructed using morphological characters. We illustrate this procedure with tests of monophyly for four subfamilies in the lizard family Iguanidae using 1561 aligned base positions (838 phylogenetically informative) of mitochondrial DNA sequences, representing coding regions for eight tRNAs, ND2, and portions of ND1 and COI. Ten new sequences ranging in length from 1732 to 1751 bases are compared with 12 previously reported sequences and 67 morphological characters (54 phylogenetically informative) from the literature. New morphological character states are provided for Sator. Phylogenies derived from the molecular and combined data are in agreement but both conflict with phylogenetic inferences from the morphological data alone. Strong support is found for the monophyly of the subfamilies Crotaphytinae and Phrynosomatinae. Monophyly of the Iguaninae is weakly supported in each analysis. All analyses suggest that the Tropidurinae is not monophyletic but the hypothesis of monophyly cannot be rejected. A phylogenetic taxonomy is proposed in which the Tropidurinae* is maintained as a metataxon (denoted with an asterisk), for which monophyly has not been demonstrated. Within the Phrynosomatinae, the close relationship of Sator and Sceloporus is questioned and an alternative hypothesis in which Sator is the sister taxon to a clade comprising Petrosaurus, Sceloporus, and Urosaurus is presented. Statistical tests of monophyly provide a powerful way to evaluate support for taxonomic groupings. Use of the metataxon prevents premature taxonomic rearrangements where support is lacking.
منابع مشابه
The complete mitochondrial genome of an agamid lizard from the Afro-Asian subfamily agaminae and the phylogenetic position of Bufoniceps and Xenagama.
Squamate reptiles are traditionally divided into six groups: Iguania, Anguimorpha, Scincomorpha, Gekkota (these four are lizards), Serpentes (snakes), and Amphisbaenia (the so-called worm lizards). The Iguania is recognized as having two major lineages the Iguanidae and Acrodonta (Agamidae and Chamaeleonidae). Currently, there are complete mitochondrial genomes from three Anguimorpha (Kumazawa,...
متن کاملPhylogenetic relationships and heterogeneous evolutionary processes among phrynosomatine sand lizards (Squamata, Iguanidae) revisited.
Phylogenetic analyses of DNA sequences were conducted to evaluate four alternative hypotheses of phrynosomatine sand lizard relationships. Sequences comprising 2871 aligned base pair positions representing the regions spanning ND1-COI and cyt b-tRNA(Thr) of the mitochondrial genome from all recognized sand lizard species were analyzed using unpartitioned parsimony and likelihood methods, likeli...
متن کاملThe high-level classification of skinks (Reptilia, Squamata, Scincomorpha).
Skinks are usually grouped in a single family, Scincidae (1,579 species) representing one-quarter of all lizard species. Other large lizard families, such as Gekkonidae (s.l.) and Iguanidae (s.l.), have been partitioned into multiple families in recent years, based mainly on evidence from molecular phylogenies. Subfamilies and informal suprageneric groups have been used for skinks, defined by m...
متن کاملCharacter congruence and phylogenetic signal in molecular and morphological data sets: a case study in the living Iguanas (Squamata, Iguanidae).
The lizard family Iguanidae comprises eight living genera distributed throughout the New and Old World, and includes several island endemics. We reconstruct phylogenetic relationships among these genera using 90 previously published morphological characters, to which we add a molecular (mtDNA sequence) data set that includes 742 nucleotides of the ND4 gene and the complete sequences of the hist...
متن کاملComparison of the Lipophosphoglycan 3 Gene of the Lizard and Mammalian Leishmania: A Homology Modeling
Background: Lipophosphoglycan 3 (LPG3) is required for the LPG assembly, a well known virulent molecule. In this study, the LPG3 gene of the lizard and mammalian Leishmania species were cloned and sequenced. A three-dimensional structure (3D) for the target sequence was also predicted by comparative (homology) modeling. Materials and Methods: An optimization PCR amplification was performed o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular phylogenetics and evolution
دوره 10 3 شماره
صفحات -
تاریخ انتشار 1998